CS250P: Computer Systems Architecture
Pipelining

(1
>

Sang-Woo Jun

Fall 2023
Large amount of material adapted from MIT 6.004, “Computation Structures”,
U ‘ I Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,
and CS 152 Slides by Isaac Scherson

State of our understanding

(d Complex logic has high propagation delay
o Which leads to lower clock speed

J Naturally, we must trade-off complexity of the processor vs. clock speed
o Is this true?

J Q1. Can we make complex processors run at higher clock speeds
d Q2. Will higher clock speeds actually lead to higher performance

Eight great ideas

(1 Design for Moore’s Law

¥ Use abstraction to simplify design
ﬁ Make the common case fast

(J Performance via parallelism

dPerformance via pipelining_>

d Performance via prediction

J Hierarchy of memories
J Dependability via redundancy

But before we start...

MOORE'S LAW

~_-

COMMON CASE FAST

|

PELINI

NG

A
AR
AR

HIERARCHY

DEPENDABILITY

Performance Measures

J Two metrics when designing a system

1. Latency: The delay from when an input enters the system until its
associated output is produced

2. Throughput: The rate at which inputs or outputs are processed

J The metric to prioritize depends on the application
o Embedded system for airbag deployment? Latency
o General-purpose processor? Throughput

Performance of Combinational Circuits

(J For combinational logic

o latency = t,;
~ F and G not doing work!
o throughput = 1/t,, Just holding output data

A
[|

) X X 4
>} F(X) P

X - H Y
G(X) P4
{5 e 0 —

Is this an efficient way of using hardware?

Source: MIT 6.004 2019 L12

Pipelined Circuits

d Pipelining by adding registers to hold F and G’s output
o Now F & G can be working on input X.,, while H is performing computation on X.
o A 2-stage pipeline!
o Forinput X during clock cycle j, corresponding output is emitted during clock j+2.

Assuming ideal registers
Assuming latencies of 15, 20, 25...

I L 15 \
v RN)))

x 25 L e —))

1

G H(X) = =
|

Source: MIT 6.004 2019 L12

Pipelined Circuits

F and G not doing work!
Just holding output data

|
[\

X X <
F(X) <
G(X) 2
H(X) P4

) 20+25=45]
Unpipelined

2-stage pipelined

Source: MIT 6.004 2019 L12

F(X)
[20 \
G(X) &)
H(X) =
) 25+25=50]
Latency Throughput
45 1/45
50 (Worse!) 1/25 (Better!)

Pipeline conventions

J Definition:

o A well-formed K-Stage Pipeline (“K-pipeline”) is an acyclic circuit having exactly K
registers on every path from an input to an output.

o A combinational circuit is thus a 0-stage pipeline.

(d Composition convention:
o Every pipeline stage, hence every K-Stage pipeline, has a register on its output (not
on its input).
J Clock period:

o The clock must have a period t. sufficient to cover the longest register to register
propagation delay plus setup time.

K-pipeline latency = K * t K-pipeline throughput =1/t
Source: MIT 6.004 2019 L12

lll-formed pipelines

1 Is the following circuit a K-stage pipeline? No

] Problem:

o Some paths have different number of registers

o Values from different input sets get mixed! -> Incorrect results
* B(Y,,A(X;)) <- Mixing values from t and t-1

Source: MIT 6.004 2019 L12

OUTPUTS

A pipelining methodology

—> A
—| 4ns
J Step 1:
o Draw a line that crosses every output in the f}
circuit, and mark the endpoints as terminal points.
J Step 2: t. = 8ns

o Continue to draw new lines between the terminal T = 1/(8ns)
points across various circuit connections, ensuringt L = 24ns
hat every connection crosses each line in the same direction.

o These lines demarcate pipeline stages.

] Step 3:

o Add a pipeline register at every point where a separating line crosses a connection

Strategy: Try to break up high-latency elements,
make each pipeline stage as low-latency as possible!

Source: MIT 6.004 2019 L12

Pipelining example . 2
X—= A

d 1-pipeline improves neither Lnor T

[

J T improved by breaking long combinational
path, allowing faster clock

(J Too many stages cost L, not improving T
(J Back-to-back registers are sometimes

LATENCY | THROUGHPUT
needed for well-formed pipelines 0-pipe: 4 1/4
1-pipe: 4 1/4
2-pipe: 4 1/2
3-pipe: 6 1/2

Source: MIT 6.004 2019 L12

Hierarchical pipelining

J Pipelined systems can be hierarchical

o Replacing a slow combinational component with a k-pipe version may allow faster
clock

d In the example:
o 4-stage pipeline, T=1

Source: MIT 6.004 2019 L12

Sample pipelining problem

J Pipeline the following circuit for maximum throughput while minimizing
latency.
o Each module is labeled with its latency

What is the best latency and throughput achievable?

Source: MIT 6.004 2019 L12

Sample pipelining problem
4t =4

dT="%
d L=4*4=16

i Oy, G E e E

N0l

Aside: When pipelines are not deterministic

J Lock-step pipelines are great when modules are deterministic
o Good for carefully scheduled circuits like a well-optimized microprocessor

d What if the latency of F is non-deterministic?
At some cycles, F’s pipeline register may hold invalid value

O

O
O
O

Pipeline register must be tagged with a valid

flag

How many pipeline registers should we add to G? Max possible latency?

What if F and G are both non-deterministic?

How many registers?

L

=H}—>H—>

Aside: FIFOs (First-In First-Out)

J Queues in hardware

O
O
O

O

Static size (because it’s hardware)

User checks whether full or empty before enqueue or dequeue

Enqueue/dequeue in single cycle regardless of size or occupancy

MUX! Large FIFO has long propagation delay

Daty =e————

Enqueue signal ———»

Full? «——

| DEMUX \

T
<
C

head

tail

x
| —

——)) ot 3

«— Dequeue signal

— Empty?

Counting cycles:
Benefits of an elastic pipeline

d Assume F and G are multi-cycle, internally pipelined modules

o If we don’t know how many pipeline stages F or G has, how do we ensure correct
results?

J Elastic pipeline allows correct results regardless of latency

o If L(F) == L(G), enqueued data available at very next cycle (acts like single register)
o If L(F) == L(G) + 1, FIFO acts like two pipelined registers L <- Latency in cycles
o What if we made a 4-element FIFO, but L(F) == L(G) + 4?

G will block! Results will still be correct!

* ... Just slower! How slow? 4,[F J,
X — 1 F H '—»

Measuring pipeline performance

J Latency of F is 3, Latency of G is 1, and we have a 2-element FIFO

o What would be the performance of this pipeline?

I

=H}—>H—>

—

)

(d One pipeline “bubble” every four cycles

o Duty cycle of %!

(Lo
L1 B

*Animation

Aside: Little’s law

AL =AW
o L: Number of requests in the system
o A: Throughput
o W: Latency
o Imagine a DMV office! L: Number of booths. (Not number of chairs in the room)

d In our pipeline example
o L =3 (limited by pipeline depth of G)

o W =4 (limited by pipeline depth of F) 2

o Asaresult: 1 = %! F\ D D |:|] D
How do we improve performance? -
Larger FIFO, or G |:| |:| |:|

Replicate G! (round-robin use of G1 and G2) N

CS250P: Computer Systems Architecture
Processor Microarchitecture — Pipelining

(1
>

Sang-Woo Jun

Fall 2023
Large amount of material adapted from MIT 6.004, “Computation Structures”,
U ‘ I Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,
and CS 152 Slides by Isaac Scherson

Course outline

d Part 3: Computer Architecture
o Simple and pipelined processors
o Computer Arithmetic
o Caches and the memory hierarchy

How to build a computing machine?

J Pretend the computers we know and love have never existed

(J We want to build an automatic computing machine to solve
mathematical problems

J Starting from (almost) scratch, where you have transistors and integrated
circuits but no existing microarchitecture

o No PC, no register files, no ALU
J How would you do it? Would it look similar to what we have now?

Aside: Dataflow architecture

1 Instead of traversing over instructions to execute, all instructions are
independent, and are each executed whenever operands are ready

o Programs are represented as graphs

(with dependency information)

Did not achieve market success, (why?)

i=1

Sum = ()

Program
but the ideas are now everywhere T Memory [T
e.g., Out-of-Order microarchitecture
Instruction
Update Address _ | Fetch
Unit Unit
Data Operaticn
Tokens Processing Packets

Unit

Initially False Initially False

Final sum

1 @

N
A ”Static” dataﬂow a rchitectu re Figure 2. A dataflow graph representation of sum = ZI: f(@).

The von Neumann Model

J Almost all modern computers are based on the von Neumann model
o John von Neumann, 1945 Key ideal

d Components ,/

o Main memory, where both data and programs are held
o Processing unit, which has a program counter and ALU
o Storage and I/O to communicate with the outside world

Central

Main <:> Processin <:> Storage
Memory & and I/0O

Unit

Key Idea: Stored-Program Computer

d Very early computers were programmed by manually adjusting switches
and knobs of the individual programming elements

o (e.g., ENIAC, 1945)

J von Neumann Machines instead had a
general-purpose CPU, which loaded its
instructions also from memory

o Express a program as a sequence of coded
instructions, which the CPU fetches, interprets,
and executes

o “Treating programs as data”

oo lalelel

Similar in concept to a universal Turing machine (1936)

ENIAC, Source: US Army photo

Example: Harvard Mark 1

(J Built 1944 (near the end of WW2) using switches, relays, shafts, etc

o Used to crunch numbers for Manhattan project
o Programmed by John von Neumann and others

......

Photo: ArnoldReinhold, Wikimedia commons

Example: Harvard Mark 1

d Slow by today standards!
o 3 Additions/s, 6 secs for mults, etc

Programs/data entered through tape,
no control flow instructions!
(Loops meant physically gluing tape into loops)

Data also entered
via switches

Another example: MITS Altair (1978)

EXCLUSIVE!

Built using Intel 8080 @ 2 MHz ALTAIR 8800

Only input are front panel switches
Only output are front panel LEDs
First successful personal computer

DO 00O O

Bill Gates sold his first software
o Altair BASIC

o Tape reader
expansion

3 B g v BY H. EDWARD ROBERTS AND WILLIAM YATES

Actually a bad example... Programs were entered via switches/tape

but 8080 had control flow instructions!) PROCESSOR DESCRIPTION

It's made possible by the PosutAn commodate 258 inputs and 266 out- | Processor: 8 it paraliel
ELECTRONMCS/MITS Altair 8800, a full- puts. all directly addressable, and has | Max. memory. 65,000 words (all directy

PP

von Neumann and Turing machine

d Turing machine is a mathematical model of computing machines

o Proven to be able to compute any mechanically computable functions
o Anything an algorithm can compute, it can compute

(d Components include

o An infinite tape (like memory) and a header which can read/write a location

o A state transition diagram (like program) and a current location (like pc)
» State transition done according to current value in tape

. , e N
d Only natural that computer designs Universal T.baﬁit'f.-“é.. o @\
. . Machine lagram .
gravitate towards provably universal models T e | 3 /,@ o
Description
S Cay

Infinite Tape
o1 0|01 1 |o|o| o0
Source: Manolis Kamvysselis

Stored program computer, now what?

(J Once we decide on the stored program computer paradigm
o With program counter (PC) pointing to encoded programs in memory

J Then it becomes an issue of deciding the programming abstraction
o Instruction set architecture, which we talked about

d Then, it becomes an issue of executing it quickly and efficiently

o Microarchitecture! — Improving performance/efficiency/etc while maintaining ISA
abstraction

o Which is the core of this class, starting now

The classic RISC pipeline

J Many early RISC processors had very similar structure

o MIPS, SPARC, etc...
o Major criticism of MIPS is that it is too optimized for this 5-stage pipeline

d RISC-V is also typically taught using this structure as well

Write
Back

A 4

Decode Execute Memory

\ 4
A 4

Fetch

Remember:
Super simplified processor operation

inst = mem[PC]
next PC=PC+4

if (inst.type == STORE) mem|rf[inst.argl]] = rf[inst.arg2]

if (inst.type == LOAD) rf[inst.argl] = mem|[rf[inst.arg2]]

if (inst.type == ALU) rf[inst.argl] = alu(inst.op, rf[inst.arg2], rf[inst.arg3])
if (inst.type == COND) next_PC = rf[inst.argl]

PC =next_PC

The classic RISC pipeline

d Fetch: Request instruction fetch from memory
(1 Decode: Instruction decode & register read

(J Execute: Execute operation or calculate address
d Memory: Request memory read or write

- Writeback: Write result (either from execute or memory) back to register

Why these 5 stages? Why not 1 or 67

Reminder:
A high-level view of computer architecture

CPU

Instruction Data Low latency
cache cache (~1 cycle)

Shared cache

E:

DRAM

High latency
(100s~1000s of cycles)

Will deal with caches in detail later!

Designing a microprocessor

d Many, many constraints processors optimize for, but for now:

d Constraint 1: Circuit timing

o Processors are complex! How do we organize the pipeline to process instructions
as fast as possible?

d Constraint 2: Memory access latency
o Register files can be accessed as a combinational circuit, but it is small

o All other memory have high latency, and must be accessed in separate
request/response

* Memory can have high throughput, but also high latency

Memory will be covered in detail later!

The most basic microarchitecture

(J Because memory is not combinational, our RISC ISA requires at least
three disjoint stages to handle
o Instruction fetch
o Instruction receive, decode, execute (ALU), register file access, memory request
o |f mem read, write read to register file

J Three stages can be implemented as a . Rngiilseter
Finite State Machine (FSM)

I

Instruction —>

PC Decoder ALU

Will this processor be fast? \ @ / @ | ~.

Why or why not? Memory Interface

Limitations of our simple microarchitecture

] Stage two is disproportionately long
o Very long critical path, which limits the clock speed of the whole processor
o Stages are “not balanced”

(J Note: we have not pipelined things yet!

*Critical path depends on
the latency of each component Register

File

Instruction —>

@

AU

Memory Interface

1
|
|
|
1
|
|
|
PC |
|
|
|
1
|
|
|

Limitations of our simple microarchitecture

1 Let’s call our stages Fetch(“F”), Execute(“E”), and Writeback (“W”)

J Speed of our simple microarchitecture, assuming:
o Clock-synchronous circuits, single-cycle memory

 Lots of time not spent doing useful work!
o Can pipelining help with performance?

time

instr. 1 F E W

F E W

\)
|

Clock cycle due to critical path of Execute

instr. 2

Pipelined processor introduction

d Attempt to pipeline our processor using pipeline registers/FIFOs

Writeback

\ 4

\ 4

Execute

Fetch

* We will see soon why pipelining
J Much better latency and throughput! a processor isn't this simple
o Average CPl reduced from 3 to 1!

o Still lots of time spent not doing work. Can we do better?
time

instr. 1 F E W

F E W E W

instr. 2

Note we need a memory interface with two concurrent interfaces now! (For fetch and execute)
Remember instruction and data caches!

Building a balanced pipeline

(J Must reduce the critical path of Execute

J Writing ALU results to register file can be moved to “Writeback”
o Most circuitry already exists in writeback stage
o No instruction uses memory load and ALU at the same time

* RISC!

Memory Interface

|
:
|
Register !
File !
| |
| |
: I :
| |
: Instruction | :
PC E Decoder ALU :
\ ! /' | :
| 4
| = '
|
|

Building a balanced pipeline

] Divide execute into multiple stages

o “Decode”
e Extract bit-encoded values from instruction word
* Read register file

o “Execute”
* Perform ALU operations

o “Memory”
e Request memory read/write

J No single critical path which reads and writes to register file in one cycle

Execute —>| Writeback

A 4

Fetch

Results in a small number of stages with relatively good balance!

ldeally balanced pipeline performance

J Clock cycle: 1/5 of total latency

1 Circuits in all stages are always busy with useful work

instr. 1

instr. 2

instr. 3

time
Fetch Decode Execute Memory | Writeback
Fetch Decode Execute Memory | Writeback
Fetch Decode Execute Memory | Writeback

Aside: Real-world processors have wide
range of pipeline stages

Name |stages

AVR/PIC microcontrollers 2
ARM Cortex-MO 3
Apple A9 (Based on ARMv8) 16
Original Intel Pentium 5
Intel Pentium 4 30+
Intel Core (i3,i5,i7,...) 14+
RISC-V Rocket 6

Designs change based on requirements!

Wil our pipeline operate correctly?

Register |
File

Fetch Decode » Execute » Memory —| Writeback

Memory Interface

A problematic example

(J What should be stored in data+8? 3, right?

la t08 data

lw s0, B8(ta)
lw s1, 4(t@)
add s2, sB, sl

sw 52, 3(t0)
data:
word 1 2

d Assuming zero-initialized register file, our pipeline will write zero
Why? “Hazards”

	Slide 1: CS250P: Computer Systems Architecture Pipelining
	Slide 2: State of our understanding
	Slide 3: Eight great ideas
	Slide 4: Performance Measures
	Slide 5: Performance of Combinational Circuits
	Slide 6: Pipelined Circuits
	Slide 7: Pipelined Circuits
	Slide 8: Pipeline conventions
	Slide 9: Ill-formed pipelines
	Slide 10: A pipelining methodology
	Slide 11: Pipelining example
	Slide 12: Hierarchical pipelining
	Slide 13: Sample pipelining problem
	Slide 14: Sample pipelining problem
	Slide 15: Aside: When pipelines are not deterministic
	Slide 16: Aside: FIFOs (First-In First-Out)
	Slide 17: Counting cycles: Benefits of an elastic pipeline
	Slide 18: Measuring pipeline performance
	Slide 19: Aside: Little’s law
	Slide 20: CS250P: Computer Systems Architecture Processor Microarchitecture – Pipelining
	Slide 21: Course outline
	Slide 22: How to build a computing machine?
	Slide 23: Aside: Dataflow architecture
	Slide 24: The von Neumann Model
	Slide 25: Key Idea: Stored-Program Computer
	Slide 26: Example: Harvard Mark 1
	Slide 27: Example: Harvard Mark 1
	Slide 28: Another example: MITS Altair (1978)
	Slide 29: von Neumann and Turing machine
	Slide 30: Stored program computer, now what?
	Slide 31: The classic RISC pipeline
	Slide 32: Remember: Super simplified processor operation
	Slide 33: The classic RISC pipeline
	Slide 35: Reminder: A high-level view of computer architecture
	Slide 36: Designing a microprocessor
	Slide 37: The most basic microarchitecture
	Slide 38: Limitations of our simple microarchitecture
	Slide 39: Limitations of our simple microarchitecture
	Slide 40: Pipelined processor introduction
	Slide 41: Building a balanced pipeline
	Slide 42: Building a balanced pipeline
	Slide 43: Ideally balanced pipeline performance
	Slide 44: Aside: Real-world processors have wide range of pipeline stages
	Slide 45: Will our pipeline operate correctly?
	Slide 46: A problematic example

